Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N -(2-Azaniumylethyl)carbamate monohydrate

Bo Shao ${ }^{\text {a }}$ and Hai-Bin Wang ${ }^{\text {b* }}$

${ }^{\text {a }}$ College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, People's Republic of China, and ${ }^{\mathbf{b}}$ College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
Correspondence e-mail: zgdwhb@sina.com

Received 29 July 2011; accepted 26 October 2011

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.034 ; w R$ factor $=0.093$; data-to-parameter ratio $=12.2$.

In the crystal structure of the title compound, $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, the organic molecule exists as zwitterion with the carboxyl group deprotonated and the amino group protonated. In the crystal, the components are linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Related literature

CO_{2} readily reacts with amines to yied carbamates, see: Brown \& Gray (1982); Dell'Amico et al. (2003); Jing et al. (2007). For N -(2-ammonioethyl)carbamate (AECM), a reactive product of ethylenediamine with CO_{2}, see: Garbauskas et al. (1983); Antsyshkina et al. (2007). For standard bond lengths, see: Allen et al. (1987).

Experimental

Crystal data

$\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=122.13$
Monoclinic, $P 2_{1} / c$
$a=8.0301$ (6) А
$b=8.7842$ (7) A
$c=8.1748$ (6) \AA
$\beta=98.889$ (1) ${ }^{\circ}$

Data collection

Bruker APEX area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2001)
$T_{\text {min }}=0.945, T_{\text {max }}=0.966$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
H atoms treated by a mixture of
$w R\left(F^{2}\right)=0.093$
$S=1.04$
1002 reflections
82 parameters

2877 measured reflections 1002 independent reflections 960 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.016$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 A \cdots \mathrm{O} 1$	0.80 (3)	1.92 (3)	2.708 (2)	170 (3)
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{~B} \cdots \mathrm{O} 2{ }^{\text {i }}$	0.86 (3)	1.92 (3)	2.773 (2)	171 (3)
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{C} \cdots \mathrm{O}^{\text {ii }}$	0.89	1.89	2.767 (2)	167
$\mathrm{N} 1-\mathrm{H} 1 D \cdots \mathrm{O} 2^{\text {iii }}$	0.89	1.91	2.775 (2)	163
$\mathrm{N} 1-\mathrm{H} 1 E \cdots \mathrm{O} 1^{\text {iv }}$	0.89	1.95	2.798 (2)	158
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 2^{\text {v }}$	0.86	2.43	3.278 (2)	167
$\mathrm{C} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1^{\text {vi }}$	0.97	2.56	3.499 (2)	163

Symmetry codes: (i) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; (ii) $x, y, z-1$; (iii) $-x+2,-y+1,-z$; (iv) $x,-y+\frac{3}{2}, z-\frac{1}{2}$; (v) $x,-y+\frac{1}{2}, z-\frac{1}{2}$; (vi) $-x+1,-y+1,-z$.

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2244).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Antsyshkina, A. S., Sadikov, G. G., Solonina, I. A. \& Rodnikova, M. N. (2007). Russ. J. Inorg. Chem. 52, 1561-1566
Brown, C. J. \& Gray, L. R. (1982). Acta Cryst. B38, 2307-2308.
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Dell'Amico, D. B., Calderazzo, F., Labella, L., Marchetti, F. \& Pampaloni, G. (2003). Chem. Rev. 103, 3857-3898.

Garbauskas, M. F., Goehner, R. P. \& Davis, A. M. (1983). Acta Cryst. C39, 1684-1686.
Jing, H. M., Zhang, S. B., Jin, R. C. \& Ma, Y. H. (2007). Wuh. Univ. J. Nat. Sci. 12, 1099-1102.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2011). E67, o3201 [doi:10.1107/S1600536811044850]

N-(2-Azaniumylethyl)carbamate monohydrate

B. Shao and H.-B. Wang

Comment

It has been known for decades that CO_{2} readily reacts with amines to yied carbamates (Brown \& Gray 1982; Dell'Amico et al. 2003; Jing et al. 2007). N-(2-ammonioethyl)carbamate (AECM), a reactive product of ethylenediamine with CO_{2}, was reported previously (Garbauskas et al. 1983; Antsyshkina et al. 2007). Recently, AECM hydrate, (I) (Scheme 1, Table 1), is prepared from ethylenediamine as starting material in our lab, and its structure is studied hereafter.

In (I), AECM molecule exists as zwitterion, the molecule is linked with the water molecule by an O3- $\mathrm{H} 3 \mathrm{~A} \cdots \mathrm{O} 1$ hydrogen bond (Fig. 1, Table 2). The N1 atom is protonated, showing as the center of positive charge. The negative charge is concentrated on the O 2 atom of the $\mathrm{COO}-\mathrm{fragment}$ and is somewhat delocalized: the $\mathrm{C} 3-\mathrm{O} 1$ and $\mathrm{C} 3-\mathrm{N} 2$ bonds are slightly elongated, and the $\mathrm{N} 2-\mathrm{C} 2$ bond is shortened compared to standard values of $1.21,1.334$ and $1.454 \AA$, respectively (Allen et al. 1987). The torsion angle of $\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2[46.21(18) \%]$ is much smaller than that observed in the one of Garbauskas' polymorphs (175.6\%), and is smaller than those observed in the second polymorph (66.6% in Antsyshkina's case, 65.5% in Garbauskas' case).

There are many hydrogen bonds in the crystal (Fig. 1, Table 2), playing important role in restraining the AECM comformation, and in building the crystal.

Experimental

Ethylenediamine (10.1 ml) was dissolved in xylenol (25.2 ml), forming clear solution with stirring, afterwards, the resulting solution was exposed in the air for two month at room temperature. With the reaction deepened, the system separated into two layers gradually. Upper layer was yellowish and pasty, and lower layer was colorless and clear. Crystals of (I) (6.9 g) were at the bottom of the lower lay. Analysis: Cald. for (I) (\%): C 29.50, H 8.25, N 22.94; found: C 29.45, H 8.31, N 22.90. IR Spectrum (KBr, cm^{-1}): $3289(\mathrm{~s})$, 2964(m), 2214(w), 1673(m), 1601(s), 1492(s), 1381(s), 1332(s), 1210(w), 1146(m), $1050(\mathrm{w}), 1029(\mathrm{w}), 1010(\mathrm{w}), 887(\mathrm{w}), 861(\mathrm{w}), 821(\mathrm{~m}), 725(\mathrm{~m}), 646(\mathrm{w}), 555(\mathrm{~m}) .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{D} 2 \mathrm{O}\right) \delta / \mathrm{p} . \mathrm{p} . \mathrm{m} .: 3.20$ (t, 2 H, J = 5.95), $2.97(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.95)$.

Refinement

H atoms of water melecule were deduced from Fourier Maps, and incoporated in refinement freely. The others were placed in calculated positions and allowed to ride on their parent atoms at distances of $0.86 \AA$ for acidamide $\mathrm{N}-\mathrm{H}, 0.89 \AA$ for amonnium $\mathrm{N} — \mathrm{H}$ and $0.97 \AA$ for ethylene $\mathrm{C}-\mathrm{H}$, respectively, with isotropic displacement parameters $1.2-1.5$ times U_{eq} of the parent atoms.

supplementary materials

Figures

Fig. 1. Crystal structure of (I) with labeling and displacemant ellipsoids drawn at the 40% probability level. Intermolecular hydrogen bonding is shown as a dashed line.

Fig. 2. The crystal packing of (I) viewed down the b axis. Hydrogen bonds are drawn as dashed lines.

N-(2-Azaniumylethyl)carbamate monohydrate

Crystal data

$\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=122.13$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=8.0301$ (6) \AA
$b=8.7842(7) \AA$
$c=8.1748(6) \AA$
$\beta=98.889(1)^{\circ}$
$V=569.71$ (7) \AA^{3}
$Z=4$

Data collection

Bruker APEX area-detector diffractometer
Radiation source: fine-focus sealed tube graphite
φ and ω scan
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\text {min }}=0.945, T_{\text {max }}=0.966$
2877 measured reflections

Refinement

Refinement on F^{2}

Least-squares matrix: full
$F(000)=264.0$
$D_{\mathrm{x}}=1.424 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 358 K
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1358 reflections
$\theta=2.4-18.3^{\circ}$
$\mu=0.12 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, colorless
$0.35 \times 0.34 \times 0.30 \mathrm{~mm}$

$$
\begin{aligned}
& 1002 \text { independent reflections } \\
& 960 \text { reflections with } I>2 \sigma(I) \\
& R_{\mathrm{int}}=0.016 \\
& \theta_{\max }=25.0^{\circ}, \theta_{\min }=2.6^{\circ} \\
& h=-9 \rightarrow 9 \\
& k=-10 \rightarrow 10 \\
& l=-9 \rightarrow 6
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.093$
$S=1.04$
1002 reflections
82 parameters
0 restraints

Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0545 P)^{2}+0.1863 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.21 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.27 \mathrm{e} \AA^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} U_{\text {eq }}$
O3	$0.79493(17)$	$0.47441(13)$	$0.42240(14)$	$0.0480(4)$
H3A	$0.788(2)$	$0.472(2)$	$0.326(3)$	$0.050(5)^{*}$
H3B	$0.844(3)$	$0.391(3)$	$0.466(3)$	$0.069(6)^{*}$
O2	$0.91742(12)$	$0.29983(10)$	$0.06003(11)$	$0.0324(3)$
O1	$0.75733(13)$	$0.50450(10)$	$0.08899(11)$	$0.0325(3)$
N1	$0.82463(13)$	$0.69023(12)$	$-0.32825(13)$	$0.0270(3)$
H1D	0.9110	0.6736	-0.2480	0.041^{*}
H1E	0.8288	0.7855	-0.3644	0.041^{*}
H1C	0.8303	0.6260	-0.4114	0.041^{*}
N2	$0.76650(14)$	$0.40847(12)$	$-0.16430(13)$	$0.0265(3)$
H2	0.8216	0.3547	-0.2257	0.032^{*}
C3	$0.81591(15)$	$0.40494(13)$	$0.00256(15)$	$0.0235(3)$
C2	$0.62537(16)$	$0.49851(15)$	$-0.24347(16)$	$0.0280(3)$
H2A	0.5340	0.4898	-0.1790	0.034^{*}
H2B	0.5862	0.4560	-0.3521	0.034^{*}
C1	$0.66425(16)$	$0.66607(15)$	$-0.26316(16)$	$0.0288(3)$
H1A	0.5729	0.7126	-0.3380	0.035^{*}
H1B	0.6709	0.7161	-0.1566	0.035^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O3	$0.0844(9)$	$0.0333(6)$	$0.0250(6)$	$0.0148(6)$	$0.0046(6)$	$-0.0027(5)$

O2	$0.0397(5)$	$0.0250(5)$	$0.0294(5)$	$0.0052(4)$	$-0.0050(4)$	$0.0000(4)$
O1	$0.0459(6)$	$0.0274(5)$	$0.0252(5)$	$0.0038(4)$	$0.0084(4)$	$-0.0035(4)$
N1	$0.0343(6)$	$0.0222(5)$	$0.0239(5)$	$-0.0015(4)$	$0.0022(4)$	$0.0029(4)$
N2	$0.0349(6)$	$0.0236(6)$	$0.0213(6)$	$0.0056(4)$	$0.0050(4)$	$0.0001(4)$
C3	$0.0279(6)$	$0.0183(6)$	$0.0243(6)$	$-0.0041(5)$	$0.0044(5)$	$0.0003(5)$
C2	$0.0273(6)$	$0.0297(7)$	$0.0263(7)$	$-0.0017(5)$	$0.0018(5)$	$0.0038(5)$
C1	$0.0316(7)$	$0.0263(7)$	$0.0283(7)$	$0.0062(5)$	$0.0036(5)$	$0.0023(5)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{O} 3-\mathrm{H} 3 \mathrm{~A}$	$0.78(2)$
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{~B}$	$0.88(3)$
$\mathrm{O} 2-\mathrm{C} 3$	$1.2725(15)$
$\mathrm{O} 1-\mathrm{C} 3$	$1.2603(15)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.4828(16)$
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{D}$	0.8900
$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{E}$	0.8900
$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{C}$	0.8900
$\mathrm{H} 3 \mathrm{~A}-\mathrm{O} 3-\mathrm{H} 3 \mathrm{~B}$	$110(2)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{D}$	109.5
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{E}$	109.5
$\mathrm{H} 1 \mathrm{D}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{E}$	109.5
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{H} 1 \mathrm{D}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{H} 1 \mathrm{E}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 2$	$123.13(10)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{H} 2$	118.4
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{H} 2$	118.4
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{O} 2$	$124.74(11)$
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{N} 2$	$118.03(11)$
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{N} 2$	$117.23(11)$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 3-\mathrm{O} 1$	$-13.44(17)$
C2—N2-C3-O2	$165.99(11)$

$\mathrm{N} 2-\mathrm{C} 3$	$1.3608(16)$
$\mathrm{N} 2-\mathrm{C} 2$	$1.4499(16)$
$\mathrm{N} 2-\mathrm{H} 2$	0.8600
$\mathrm{C} 2-\mathrm{C} 1$	$1.5184(18)$
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9700
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9700
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	0.9700
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	0.9700
$\mathrm{~N} 2-\mathrm{C} 2-\mathrm{C} 1$	$114.63(10)$
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	108.6
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	108.6
$\mathrm{~N} 2-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.6
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.6
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	107.6
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{C} 2$	$112.39(10)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.1
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.1
N1-C1-H1B	109.1
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.1
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	107.9
C3-N2-C2-C1	$79.98(15)$
N2-C2-C1-N1	$46.09(15)$

Hydrogen-bond geometry ($\left.\AA,{ }^{\circ}\right)$

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3 — \mathrm{H} 3 \mathrm{~A} \cdots \mathrm{O} 1$	$0.80(3)$	$1.92(3)$	$2.708(2)$	$170(3)$
$\mathrm{O} 3 — \mathrm{H} 3 \mathrm{~B} \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.86(3)$	$1.92(3)$	$2.773(2)$	$171(3)$
$\mathrm{N} 1 — \mathrm{H} 1 \mathrm{C} \cdots \mathrm{O} 3^{\mathrm{ii}}$	0.89	1.89	$2.767(2)$	167.
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{D} \cdots \mathrm{O} 2^{\mathrm{iii}}$	0.89	1.91	$2.775(2)$	163.
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{E} \cdots 1^{\mathrm{iv}}$	0.89	1.95	$2.798(2)$	158.
$\mathrm{~N} 2 — \mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{V}}$	0.86	2.43	$3.278(2)$	167.
$\mathrm{C} 2 — \mathrm{H} 2 \mathrm{~A} \cdots \mathrm{Ol}^{\mathrm{vi}}$	0.97	2.56	$3.499(2)$	163.

Symmetry codes: (i) $x,-y+1 / 2, z+1 / 2$; (ii) $x, y, z-1$; (iii) $-x+2,-y+1,-z$; (iv) $x,-y+3 / 2, z-1 / 2$; (v) $x,-y+1 / 2, z-1 / 2$; (vi) $-x+1,-y+1$, $-z$.

sup-4

supplementary materials

Fig. 1

Fig. 2

